📢 Gate廣場專屬 #WXTM创作大赛# 正式開啓!
聚焦 CandyDrop 第59期 —— MinoTari (WXTM),總獎池 70,000 枚 WXTM 等你贏!
🎯 關於 MinoTari (WXTM)
Tari 是一個以數字資產爲核心的區塊鏈協議,由 Rust 構建,致力於爲創作者提供設計全新數字體驗的平台。
通過 Tari,數字稀缺資產(如收藏品、遊戲資產等)將成爲創作者拓展商業價值的新方式。
🎨 活動時間:
2025年8月7日 17:00 - 8月12日 24:00(UTC+8)
📌 參與方式:
在 Gate廣場發布與 WXTM 或相關活動(充值 / 交易 / CandyDrop)相關的原創內容
內容不少於 100 字,形式不限(觀點分析、教程分享、圖文創意等)
添加標籤: #WXTM创作大赛# 和 #WXTM#
附本人活動截圖(如充值記錄、交易頁面或 CandyDrop 報名圖)
🏆 獎勵設置(共計 70,000 枚 WXTM):
一等獎(1名):20,000 枚 WXTM
二等獎(3名):10,000 枚 WXTM
三等獎(10名):2,000 枚 WXTM
📋 評選標準:
內容質量(主題相關、邏輯清晰、有深度)
用戶互動熱度(點讚、評論)
附帶參與截圖者優先
📄 活動說明:
內容必須原創,禁止抄襲和小號刷量行爲
獲獎用戶需完成 Gate廣場實名
Stability AI火速發布Llama 2微調模型FreeWilly,性能媲美ChatGPT!網友驚呼遊戲規則已改變
來源:新智元
Meta的Llama 2一發布,就引爆了整個開源社區。
正如OpenAI科學家Karpathy所說,對於整個大語言模型領域來說,這是極其重要的一天。在開放權重的所有模型中,Llama 2是最強大的一個。
從此,開源大模型與閉源大模型的差距將進一步縮小,構建大模型的機會,從此對所有開發者都是平等的。
就在剛剛,Stability AI和CarperAI實驗室聯合發布了基於LLaMA 2 70B模型的微調模型——FreeWilly2。
以及,基於LLaMA 65B原始模型微調的——FreeWilly1。
在各項基準測試中,FreeWilly2都展現出了卓越的推理能力,甚至有部分任務還超過了GPT-3.5。
這兩款模型都是研究實驗,並在非商業許可下發布。
數據生成與收集
Stability AI表示,FreeWilly模型的訓練是受到了微軟論文《Orca: Progressive Learning from Complex Explanation Traces of GPT-4》的直接啟發。
不過,雖然數據生成過程類似,但來源卻有所不同。
FreeWilly的數據集變體包含有60萬個數據點(大約是原始Orca論文使用的數據集大小的10%),並通過使用Enrico Shippole創建的高質量指令數據集,對模型進行了引導:
COT 子混音原版
NIV2 Submix 原版
FLAN 2021 子混音原創
T0 子混音原創
通過這種方法,Stability AI使用了一個較簡單的LLM模型生成了50萬個示例,再使用一個更複雜的LLM模型生成了額外的10萬個示例。
儘管訓練樣本量僅為原始Orca論文的十分之一,但由此生成的FreeWilly模型,不僅在各種基準測試中都表現出色,而且也驗證了合成生成數據集方法的可行性。
模型性能的評估
在性能評估方面,Stability AI的研究人員採用了EleutherAI的lm--harness,並加入了AGI。
從結果來看,FreeWilly在很多方面都表現出色,包括複雜的推理、理解語言的微妙之處,以及回答與專業領域相關的複雜問題(如法律和數學問題解決)。
基本上,FreeWilly 2已經實現了與ChatGPT相當的水平,甚至在有些評測上更勝一籌。
可以看到,在Open LLM排行榜上,FreeWilly 2以絕對領先的優勢排在第一,平均得分比原始版的Llama 2高了4個百分點。
為了開放的未來
可以說,FreeWilly1和FreeWilly2為開源大語言模型樹立了新的標準。
這兩個模型的推出,不僅極大地推進了相關領域的研究,增強了自然語言理解能力,而且還支持複雜任務的完成。
Stability AI表示,團隊為這些模型能AI社區帶來的無限可能感到非常興奮,並期待著那些因它們而激發出全新應用。
此外,也衷心感謝充滿激情的研究人員、工程師和合作夥伴團隊,是他們的卓越努力和奉獻,使Stability AI能夠達到這一重要里程碑。
激動人心的時刻
模型一經發布,網友「Phil Howes」就利用Tuhin Srivastava的Llama v2框架,在不到一分鐘時間就完成了FreeWilly 2的實現。
經過275GB的權重加載後,模型的運行速度在開箱即用的情況下達到了23 token/s。